

Name of the Program: BSC (Data Science)

							TEACHING & EVALUATION SCHEME					
						S		THEORY	PRACTICAL			
COURSE CODE	CATEGORY	COURSE NAME	L	Т	P	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	
BSCDS201	Major	Data Structures	2	0	2	3	60	20	20	30	20	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

Q/A – Quiz/Assignment/Attendance, MST - Mid Sem Test.

Course Educational Objectives(CEOs):

- Allow to assess how the choice of data structures and algorithm design methods impacts the performance of programs.
- To choose the appropriate data structure and algorithm design method for a specified application.
- To solve problems using data structures such as linear lists, stacks, queues, binary trees, binary search trees, and graphs and writing programs for these solutions.
- To efficiently implement the different data structures and solutions for specific problems.

Course Outcomes (Cos): students will be able to

- Analyze the concepts of algorithm evaluation and find time and space complexities for searching and sorting algorithms.
- Implement linear data structure such as stacks, queues, linked lists and their applications.
- Implement basic operations on binary trees.
- Demonstrate the representation and traversal techniques of graphs and their applications on data.

^{*}Teacher Assessment shall be based on following components: Quiz/Assignment/project/Participation in class (Given that no component shall be exceed 10 Marks)

Name of the Program: BSC (Data Science)

							TEACHING & EVALUATION SCHEME					
						S		THEORY	PRACTICAL			
COURSE CODE	CATEGORY	COURSE NAME	L	Т	P	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	
BSCDS201	Major	Data Structures	2	0	2	3	60	20	20	30	20	

UNIT - I

Introduction, searching and sorting: Algorithm specification: Introduction, Recursive algorithms, Data Abstraction, Performance Analysis: Space complexity, time complexity, asymptotic notation, Searching: Linear and Binary search algorithms, Sorting: Bubble sort, Selection sort, Insertion sort, quick sort, merge sort.

UNIT-II

Stacks and Queues: Stacks, stacks using dynamic arrays, queues, circular queues using dynamic arrays, Evaluation of an expression: Expressions, evaluating postfix expression, conversion of infix expression to postfix expression.

UNIT-III

Linked Lists: Single linked lists, Representing chains, operations for chains, operations for circularly linked lists, doubly linked lists, Polynomials: Representation, adding polynomials, sparse matrix representation, linked stacks and queues.

UNIT-IV

Trees: Introduction: Terminology, representation of trees, binary trees: abstract data type, Properties of binary trees, binary tree representation, binary tree traversals: Inorder, preorder, postorder, Binary search trees: Definition, searching BST, insert into BST, delete from a BST, Height of a BST.

Name of the Program: BSC (Data Science)

							TEACHING & EVALUATION SCHEME					
						S	THEORY			PRACTICAL		
COURSE CODE	CATEGORY	COURSE NAME	L	Т	P	REDIT	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	
BSCDS201	Major	Data Structures	2	0	2	3	60	20	20	30	20	

UNIT-V

The Graph ADT: Introduction, definition, graph representation, elementary graph operations: BFS, DFS, Spanning trees, minimum cost spanning tree: Prim's, Kruskal's algorithms.

Text Books:

- Fundamental of Data Structures in C 2ndEdition, Horowitz, Sahani, Anderson Freed, University Press
- 2. Trembly and SORRENSON, "Introduction to Data Structure with Applications".
- 3. TennenBaum A.M., "Data Structures using C & C++"; PHI
- 4. YashwantKanetkar, "Understanding Pointers in C", BPB.

Reference Books:

- 1. Data Structures and Algorithm Analysis in C 2ndEdition, Mark Allen Weiss, Pearson
- 2. Classic Data Structures 2nd Edition, Debasis Samantha, PHI

Name of the Program: BSC (Data Science)

							TEACHING & EVALUATION SCHEM THEORY PRACTICAL				
COURSE CODE	CATEGORY	COURSE NAME	L	Т	P	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*
BSCDS201	Major	Data Structures	2	0	2	3	60	20	20	30	20

List of Programs:

- 1. Write a program to create a two dimensional array and perform add, subtract and multiplication operations.
- 2. Write a program to create a two dimensional array using dynamic memory allocation.
- 3. Write a program to implement stack.
- 4. Write a program to convert infix expression into postfix expression.
- 5. Write a program to check balanced parentheses for a given infix expression.
- 6. Write a program to evaluate postfix expression.
- 7. Write a program to implement queue.
- 8. Write a program to implement circular queue.
- 9. Write a program to implement link list with insert, delete, search, view, and delete function.
- 10. Write a program to implement ordered link list.
- 11. Write a program to add two polynomials.
- 12. Write a program to create doubly link list.
- 13. Write a program to implement tree with insert, delete and search function.
- 14. Write a program for in order, post order and preorder traversal of tree.
- 15. Write a program for binary search and sequential search using recursion.
- 16. Write a program for bubble sort and sequential search.
- 17. Write a program for insertion sort and quick sort.

Name of the Program: BSC (Data Science)

	CATEGORY COURSE NAME						TEAC	CHEME CTICAL			
COURSE CODE		L	Т	P	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	
BSCDS202	Major	Java Programming	2	0	2	3	60	20	20	30	20

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

Q/A – Quiz/Assignment/Attendance, MST - Mid Sem Test.

Course Education Objectives (CEOs):

- To familiarize the students with Object Oriented Methodology.
- Students must be able to understand fundamentals of object-oriented programming in Java, including defining classes, invoking methods, using class libraries, etc.
- Students must have the ability to write a computer program to solve specified problems.
- Students must be able to use the Java SDK environment to create, debug and run simple Java programs.
- Students must learn the concepts of JDBC and concepts of OOPs using Java.

Course Outcomes (COs):

- Understand different programming paradigms, Evolution of programming languages, Programming styles.
- Differentiate and compare structured and object oriented approach. Also understand OO design and analysis concepts.
- Design efficient solutions for real world problems.
- Explain the concept of class and objects with access control to represent real world entities.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth
Vishwavidyalaya, Indore

^{*}Teacher Assessment shall be based on following components: Quiz/Assignment/Project/Participation in class (Given that no component shall exceed 10 Marks)

Name of the Program: BSC (Data Science)

				Т			TEACHING & EVALUATION SCHEME					
						S	T	HEORY	PRACTICAL			
COURSE CODE CA	CATEGORY	COURSE NAME	L		P	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	
BSCDS202	Major	Java Programming	2	0	2	3	60	20	20	30	20	

- Demonstrate the behaviour of programs involving the basic programming constructs like control structures, constructors, string handling and garbage collection.
- Use overloading methodology on methods and constructors to develop application programs.
- Demonstrate the user defined exceptions by exception handling keywords (try, catch, throw, throws and finally).
- Describe the backend connectivity process in java program by using JDBC drivers. 14.
 Develop Java application to interact with database by using relevant software component (JDBC Driver).

Syllabus:

UNIT - I

OOPS OVERVIEW: Introduction to OOPs, Features of OOPs, Advantages of OOPs, Different types of programming approaches.

INTRODUCTION TO JAVA: What is java, History of java, Java features, Introduction to Eclipse IDE, Explanation about java compiler, JVM, JRE, JDK, Bytecode, How to run Eclipse ide.

JAVA COMPONENTS: Constant, variable, token, literal, Identifiers, datatypes, keywords, All types of operators, Command line arguments, Taking user input

Name of the Program: BSC (Data Science)

	I CATEGORY I COURSE NAME I						TEACHING & EVALUATION SCHEME					
						S	T.	HEORY		PRACTICAL		
COURSE CODE		L	Т	P	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*		
BSCDS202	Major	Java Programming	2	0	2	3	60	20	20	30	20	

UNIT - II

CONTROL STRUCTURE: Conditional statements-if, if else, nested if, ladder else if, Unconditional statements- switch case, Looping statements.

CLASS AND OBJECT: What is class and object, Data members and methods, Inner classes and types.

CONSTRUCTORS: What is constructor, Advantages, Types with examples.

UNIT - III

ARRAY: What is array, Array declaration with syntax, Types-1d, 2d and 3d with examples each.

STRING HANDLING: String introduction, String class with methods with examples, String Builder class with methods and examples, StringBuffer class with examples.

INHERITANCE: Introduction, Types with examples, Interface with example, Use of super, Use of abstract with example.

UNIT – IV

POLYMORPHISM: What is polymorphism, Types of polymorphism.

EXCEPTION HANDLING: What is exception, Types, Predefined exceptions, User-defined exceptions.

MULTI-THREADING: Introduction, Advantages. Multi-threading concept, Lifecycle of Thread, Thread priority, Thread interface, Thread synchronization.

Chairperson	Chairperson	Controller of Examination	Joint Registrar
Board of Studies	Faculty of Studies	Shri Vaishnav Vidyapeeth	Shri Vaishnav Vidyapeeth
Shri Vaishnav Vidyapeeth	Shri Vaishnav Vidyapeeth	Vishwavidyalaya, Indore	Vishwavidyalaya, Indore
Vishwavidvalava, Indore	Vishwavidvalava, Indore		

Name of the Program: BSC (Data Science)

	I CATEGORY I COURSE NAME I						TEACHING & EVALUATION SCHEME					
						S	T.	HEORY		PRACTICAL		
COURSE CODE		L	T	P	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*		
BSCDS202	Major	Java Programming	2	0	2	3	60	20	20	30	20	

UNIT - V

PACKAGE: What is package, Benefits of using package, Types, Predefined package, User-defined package.

FILE HANDLING: Java I/O, Pre-defined file i/o methods, Stream and types, File classes, File operations with examples.

JDBC: Introduction to java database, what is JDBC, JDBC Connectivity.

Reference Books:

- **1.** E. Balagurusamy, "Programming with Java: A Primer", TMH.
- 2. Patrick Naughton and HerbertzSchildt, "Java-2: The Complete Reference", TMH.
- **3.** Horstmann, "Computing Concepts with Java 2 Essentials", John Wiley.
- 4. Daniel Liang, "Introduction to Java Programming", Pearson.
- **5.** Decker and Hirshfield, "Programming Java: A Introduction to Programming Using JAVA", Vikas Publication.
- 6. N.P. Gopalan and J. Akilandeswari, "Web Technology- A Developer's Perspective", PHI.

Name of the Program: BSC (Data Science)

	I CATEGORY I COURSE NAME I						TEACHING & EVALUATION SCHEME					
						S	T.	HEORY		PRACTICAL		
COURSE CODE		L	T	P	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*		
BSCDS202	Major	Java Programming	2	0	2	3	60	20	20	30	20	

List of Experiments:

- 1. Write a Java program that prompts the user for an integer and then prints out all prime numbers up to that Integer.
- 2. Write a Java program for sorting a given list of names in ascending order.
- 3. Write a Java program that checks whether a given string is a palindrome or not.

Ex: MADAM is a palindrome.

- 4. Write a Java Program that reads a line of integers, and then displays each integer, and the sum of all the integers (use String Tokenizer class).
- 5. Write a Java program that displays the number of characters, lines and words in a text file.
- 6. Write a Java program that reads a file and displays the file on the screen, with a line number before each line.
- 7. Write a Java program that illustrates how run time polymorphism is achieved.
- 8. Write a Java program for creating multiple threads a) Using Thread class. b) Using Runnable interface.
- 9. Write a java program that illustrates the following a) Handling predefined exceptions. b) Handling user defined exceptions.