

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

(2)			TEACHI		VALUAT						
CODE	≵		TH	EORY	ı	PRACTI	ICAL				S
COURSE CC	CATEGOR	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
BTCSH107	BS	Linear Algebra	60	20	20	0	0	3	0	0	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

COURSE OBJECTIVES:

The student will have ability to:

- 1. Know the fundamental principles of the Linear algebra.
- 2. Understand and apply the basics of the Matrices and Vector Space.

COURSE OUTCOMES:

Upon completion of the subject, students will be able to:

- 1. Apply the techniques to find the Solution of Linear equations.
- 2. Apply the basics of the calculus of the Determinants.
- 3. Apply the basics of the calculus of the Matrices.
- 4. Apply the concept of Singular value decomposition and Principal component analysis in Image Processing and Machine Learning.

SYLLABUS

UNIT I 10 HOURS

Introduction to Matrices and Determinants: Solution of Linear Equations; Cramer's rule; Inverse of a Matrix.

UNIT II 9 HOURS

Vectors and linear combinations: Rank of a matrix; Gaussian elimination; LU Decomposition; Solving Systems of Linear Equations using the tools of Matrices.

UNIT III 8 HOURS

Vector space: Dimension; Basis; Orthogonally; Projections; Gram-Schmidt or thogonali zation and QR decomposition

UNIT IV 7 HOURS

Eigenvalues and Eigenvectors; Positive definite matrices; Linear transformations; Hermit Ian and unitary matrices;

UNIT V 8 HOURS

Singular value decomposition and Principal component analysis; Introduction to their applications in Image Processing and Machine Learning.

TEXTBOOKS:

1. Higher Engineering Mathematics, B. S. Grewal.

ShriVaishnavVidyapeeth

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

			TEACHI	NG & EV	VALUAT	ION SCH	EME				
ODE	×		TH	EORY		PRACTI	ICAL				
COURSE CO	CATEGOR	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
BTCSH107	BS	Linear Algebra	60	20	20	0	0	3	0	0	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

REFERENCE:

- 1. E. Kreyszig, Advanced Engineering Mathematics, 9th Edition, Wiley, 2005.
- 2. R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis, 5th Ed, Wiley, 1999.
- 3. J. Stewart, Calculus: Early Transcendentals, 5th Ed, Thomas Learning (Brooks/ Cole), Indian Reprint, 2003
- 4. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 2nd Edition, Texts in Applied Mathematics, Vol. 12, Springer Verlag, 2002.
- 5. J. D. Hoffman, Numerical Methods for Engineers and Scientists, McGraw Hill, 2001.
- 6. M.K Jain, S.R.K Iyengar and R.K Jain, Numerical methods for scientific and engineering computation (Fourth Edition), New Age International (P) Limited, New Delhi, 2004.
- 7. S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, McGraw Hill2008.

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

5					ALUAT	ION SCHI					
CODE	ORY		11	HEORY	*	PRACT	ICAL *				LS
COURSE	CATEGO	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
BTEC 104	BEC	Digital Logic & Circuit Design	60	20	20	30	20	3	1	2	5

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

COURSE OBJECTIVES:

The student will have ability to:

- 1. Use of Boolean algebra and Karnaugh Map to simplify logic function.
- 2. Describe the operation of different Combinational and Sequential Logic Circuits.

COURSE OUTCOMES:

Upon completion of the subject, students will be able to:

- 1. Design an optimal digital logic circuit to meet the given specifications.
- 2. Evaluate the performance of the given digital logic circuit based on specific criteria for reliable system implementation.

SYLLABUS

UNIT I 10 HOURS

Number System: Introduction to number systems: Decimal, Binary, Octal and Hexadecimal, Base Conversion. Signed Binary Numbers: Signed magnitude, 1's Complement and 2's Complement representation and their arithmetic operations, 32-bit Floating point representation, Codes: Types of code, Binary code, BCD, Gray code, Excess-3. BCD Addition, Code Conversion, Error Detecting and Correcting code: Even and Odd Parity, Hamming code.

UNIT II 9 HOURS

Boolean algebra and Logic gates: Introduction to logic gates, Boolean Laws, De-Morgan's theorem, Consensus theorem, Implementation using logic gates, Simplification of Boolean Expression using Boolean Laws, Canonical and Standard (SOP and POS) forms. Universal gates, NAND-NOR implementation of logic functions. Karnaugh Maps (K-maps), Minimization of logic functions using K-map. Don't Care Conditions.

UNIT III 8 HOURS

Combinational circuits: Arithmetic circuits- Half adder, Full adder, Half subtract or, Full subtract or, Parallel Adder, BCD adder, Multiplexer, De-multiplexer, Encoder and Decoder. Design of Combinational circuits using Multiplexer and Decoder.

UNIT IV 7 HOURS

Sequential Circuits: Introduction, Asynchronous and Synchronous Sequential circuits, Latches and Flip Flops: SR, D, JK and T. Characteristic equation, Characteristic and Excitation table. Master-Slave Flip-flop, Race around conditions, Flip flop conversion.

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

5					ALUAT	ION SCHI					
CODE	ORY		11	HEORY	*	PRACT	ICAL *				LS
COURSE	CATEGO	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
BTEC 104	BEC	Digital Logic & Circuit Design	60	20	20	30	20	3	1	2	5

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

UNIT V 8 HOURS

Applications of Flip-flop: Shift Register: SISO, SIPO, PISO, PIPO, Left and Right Shift Register, Bidirectional Shift Register. Counter: Ring counter, Johnson Counter, Asynchronous Up/down counter, Synchronous Up/down counters: State diagram, state table and realization, Mod-N Counter.

TEXTBOOKS:

- 1. M. Morris Mano, "Digital Logic and Computer Design", Pearson Education, 2016.
- 2. S Salivahanan and S Arivazhagan: Digital Circuits and Design, 4th Edition, Vikas Publishing House, 2012.

REFERENCE:

- 1. A. Anand Kumar, "Fundamentals of Digital Circuits", 4th Edition, PHI, 2016.
- 2. Floyd and Jain, "Digital Fundamentals", 10th Edition, Pearson Education India, 2011.
- 3. Roland J. Tocci, Widmer, Moss, "Digital Systems Principles and Applications", 10th Edition, Pearson 2009
- 4. Stephen Brown, Zvanko Vranesic, "Fundamentals of Digital Logic Design", 3rd Edition, McGraw-Hill, 2017.

LIST OF PRACTICALS

- 1. To study the operation of various logic gates and verify their truth tables.
- 2. To verify De morgana theorem
- 3. To verify the versatility of NAND and NOR gates
- 4. To compare and verify standard SOP/POS expression with minimized Boolean form using K- map.
- 5. To design and verify Adder and sub tractor circuits.
- 6. To design and verify multiplexer and DE multiplexer using basic logic gates.
- 7. To realize 4-bit parallel adder circuit.
- 8. To design and verify encoder and decoder circuits using ICs.
- 9. To verify the truth table of different flip flops.
- 10. To verify the functionality of shift register.
- 11. To verify the functionality of counter circuit.

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

			TEACHI	NG & EV	ALUAT	ION SCH	EME				
ODE	×		TH	EORY		PRACTI	ICAL				
COURSE CO	CATEGOR	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
BTCS202M	DCC	Object Oriented Programming with C++	60	20	20	30	20	3	0	2	4

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

COURSE OBJECTIVES:

The student will have ability to:

- 1. To explain abstract data types, classes and different types of objects.
- 2. To analyze the public, protected and private modes of inheriting the classes.
- 3. To demonstrate the overloading of functions and operators to grant them a different meaning.
- 4. To provide complete knowledge of Object Oriented Programming through C++ and to enhance the programming skills of the students by giving practical assignments to be done in labs.

COURSE OUTCOMES:

Upon completion of the subject, students will be able to:

- 1. Identify and describe the components of object-oriented technology and justify their relevance.
- 2. Implement inheritance for code reusability and polymorphism.
- 3. Implement object-oriented approach for real world scenarios.
- 4. Use advance features like temples and exception to make programs supporting reusability and sophistication
- 5. Develop the applications using object oriented programming with C++.

SYLLABUS

UNIT I 10 HOURS

Concepts of OOP: Introduction OOP, Procedural vs. Object Oriented Programming, Principles of OOP, Benefits and applications of OOP. C++ Basic Overview, Program structure, namespace, identifiers, variables, constants, enema, operators, typecasting, control structures.

UNIT II 9 HOURS

C++ Functions: The Main Function, Function prototyping, Simple functions, Call and Return by reference, Inline functions, Macro Vs. Inline functions, Overloading of functions, default arguments.

UNIT III 8 HOURS

Objects and Classes: Basics of object and class in C++, Private and public members, static data and function members, constructors and their types, destructors, operator overloading, friend function.

Inheritance: Concept of Inheritance, types of inheritance, access modifiers, overriding, virtual base class

UNIT IV 7 HOURS

Polymorphism: Polymorphism and its types, Pointers in C++, Pointes and Objects, this pointer, virtual and pure virtual functions, Implementing polymorphism, Abstract Methods and Classes.

Chairperson

Board of Studies,
ShriVaishnavVidyapeeth

Vishwavidyalaya, Indore

Chairperson

Controller of Examination

Registrar

Faculty of Studies, ShriVaishnavVidyapeeth Vishwavidyalaya, Indore

ShriVaishnavVidyapeeth Vishwavidyalaya, Indore ShriVaishnavVidyapeeth Vishwavidyalaya, Indore

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

			TEACHI	NG & EV	ALUAT	ION SCH	EME				
ODE	×		TH	EORY		PRACTI	ICAL				
COURSE CO	CATEGOR	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
BTCS202M	DCC	Object Oriented Programming with C++	60	20	20	30	20	3	0	2	4

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Exception Handling, Templates function and class in C++

UNIT V 8 HOURS

I/O and File management: Concept of Streams, Cin and Cout Objects, C++ Stream Classes, Unformatted and Formatted I/O, Manipulators, File Stream, C++ File Stream Classes, File Management Functions, File Modes, Binary and Random Files.

TEXTBOOKS:

- 1. David Parsons; Object oriented programming with C++; Second edition; BPB publication; 1997.
- 2. Robert LA fore; Object oriented programming in C++; Fourth edition; Pearson publication; 2002.
- 3. E Balagurusamy; Object oriented programming with C++; Seven edition; TMH; 2017.
- 4. Herbert Scheldt; Java Complete Reference; Seven edition; McGraw-Hill; 2006.

REFERENCE:

- 1. John R Hubbard; Programming in C++ (Schaum); Third edition; TMH; 2000
- 2. Venugopal; Mastering C++; second edition; TMH; 2006.
- 3. Steven Holzner; C++ Programming Black Book; First Edition; Coriolis Group, U.S; 2001.
- 4. E Balagurusamy; Programming with java a primer; Fourth edition; TMH; 2011.

LIST OF PRACTICALS

- 1. Write a program to display the following output using a single court statement. Math's=90, Physics=74, Chemistry=76
- 2. Write a program to read 2 numbers from the keyboard and display the larger value on the screen.
- 3. Write a function using reference variables as arguments to swap the values of a pair of integers.
- 4. Write a macro that obtains the largest of 3 numbers.
- 5. Create two classes DM and DB which store the value of distances. DM stores distances in meters and centimeters and DB in feet and inches. Write a program that can read values for the class objects and odd one object of DM with another object of DB. Use a friend function to carry out the addition operation. The object that stores the results may be a DM object or DB object, depending on the units in which the result are required. The display should be in the format of feet and inches or meters and centimetres depending on the object on display.
- 6. Define a class to represent a bank account. Include the following members:

Data members

- 1. Name of the depositor
- 2. Account number
- 3. Type of account

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

			TEACHIN	NG & EV	ALUAT	ION SCH	EME				
ODE	>		TH	EORY		PRACTI	ICAL				
COURSE CO	CATEGORY	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
BTCS202M	DCC	Object Oriented Programming with C++	60	20	20	30	20	3	0	2	4

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

4. Balance amount in the account

Member functions

- 1. To assign initial values
- 2. To deposit an amount
- 3. To withdraw an amount after checking the balance
- 4. To display name and balance

Write a main program to test the program.

- 7. Design a constructor for bank account class.
- 8. A book shop maintains the inventory of books that are being sold at the shop. The list includes details such as author, title, price, publisher and stock position. Whenever a customer wants a book, the sales person inputs the title and author and the system searches the list and displays whether it is available or not. If it is not, an appropriate message is displayed. If it is, then the system displays the book details and requests for the number of copies required. If the requested copies book details and requests for the number of copies required. If the requested copies are available, the total cost of the requested copies is displayed; otherwise the message "Required copies not in stock" is displayed.
 - Design a system using a class called books with suitable member functions and Constructors. Use new operator in constructors to allocate memory space required.
- 9. Improve the system design in exercise 8 to incorporate the following features:
 - (a) The price of the books should be updated as and when required. Use a private member function to implement this.
 - (b) The stock value of each book should be automatically updated as soon as a transaction is completed.
 - (c) The number of successful transactions should be recorded for the purpose of statistical analysis. Use static data members to keep count of transaction.
- 10. Design a C++ Class 'Complex' with data members' for real and imaginary part. Provide default and parameterized constructors. Write a program to perform arithmetic operations of two complex numbers using operator overloading (using either member functions or friend functions).
- 11. Create a base class shape. Use this class to store two double type values that could be used to compute area of figures. Derive two specific classes called triangle and rectangle from the base shape. Add to the base a member function get data () to initialize base class data member and another member function display area () to compute and display the area of figures. Make display area () as a virtual function and redefine it the derived class to suit their requirements.
- 12. Assume that a bank maintains two kinds of accounts for customers, one called as savings account and the other as current account. The savings account provides compound interest and withdrawal facilities but no cheque book facility. The current account provides cheque book facility but no interest. Current account holders should also maintain a minimum balance and if the balance falls below this level, a service charge is imposed. Create a class account that stores customer name, account number and type of account. From this

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

			TEACHI	NG & EV	ALUAT	ION SCH	EME				
ODE	×		TH	IEORY		PRACT	ICAL				
COURSE CO	CATEGOR	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
BTCS202M	DCC	Object Oriented Programming with C++	60	20	20	30	20	3	0	2	4

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

derive the class's curacct and savacct to make them more specific to their requirements. Include necessary member functions in order to achieve the following tasks:

- a. Accept deposit from a costumer and update the balance.
- b. Display the balance
- c. Compute and deposit interest.
- d. Permit withdrawal and update the balance.

Check for the minimum balance, impose penalty, necessary and update balance.

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

			TEACHIN	NG & EV	ALUAT	ION SCH	EME				
ODE	>		TH	EORY		PRACTI	ICAL				
COURSE CO	CATEGOR	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
BTIT201M	DCC	Data Communication	60	20	20	0	0	3	0	0	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

COURSE OBJECTIVES:

The student will have ability to:

- 1. To understand the concepts of data communications.
- 2. To be familiar with the Transmission media and Tools.
- 3. To study the functions of OSI layers.
- 4. To learn about IEEE standards in computer networking.
- 5. To get familiarized with different protocols and network components.

COURSE OUTCOMES:

Upon completion of the subject, students will be able to:

- 1. Understand the Process and functions of data communications
- 2. Understand Transmission media and Tools
- 3. Understand the functions of OSI layers
- 4. Understand IEEE standards in computer networking
- 5. Understand different protocols and network components

SYLLABUS

UNIT I 10 HOURS

Introduction: Data Communication Components, Types of Connections, Transmission Modes, Network Devices, Topologies, Protocols and Standards, OSI Model, Transmission Media, Bandwidth, Bit Rate, Bit Length, Baseband and Broadband Transmission, Attenuation, Distortion, Noise, Throughout, Delay and Jitter

UNIT II 9 HOURS

Data Encoding: Unipolar, Polar, Bipolar, Line and Block Codes. Multiplexing: Introduction and History, FDM, TDM, WDM, Synchronous and Statistical TDM. Synchronous and Asynchronous transmission, Serial and Parallel Transmission.

UNIT III 8 HOURS

Error Detection & Correction: Correction, Introduction—Block Coding—Hamming Distance, CRC, Flow Control and Error Control, Stop and Wait, Error Detection and Error Go Back—N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, CSMA/CD, CDMA/CA

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

			TEACHIN	NG & EV	ALUAT	TON SCH	EME				
ODE	Y		TH	EORY		PRACTI	ICAL				
COURSE CO	CATEGOR	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
BTIT201M	DCC	Data Communication	60	20	20	0	0	3	0	0	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

UNIT IV 7 HOURS

Network Switching Techniques: Circuit, Message, Packet and Hybrid Switching Techniques.X.25, ISDN. Logical Addressing, Ipv4, Ipv6, Address Mapping, ARP, RARP, BOOTP and DHCP, User Datagram Protocol, Transmission Control Protocol, SCTP.

UNIT V 8 HOURS

Application Layer Protocols: Domain Name Service Protocol, File Transfer Protocol, TELNET, WWW and Hyper Text Transfer Protocol, Simple Network Management Protocol, Simple Mail Transfer Protocol, Post Office Protocol v3.

TEXTBOOKS:

 Behrouz A. Forouzan, "Data communication and Networking", Fourth Edition, Tata McGraw Hill, 2011.

REFERENCE:

- 1. Larry L. Peterson, Peter S. Davie, "Computer Networks", Fifth Edition, Elsevier, 2012
- 2. William Stallings, "Data and Computer Communication", Eighth Edition, Pearson Education, 2007.
- 3. James F. Kurose, Keith W. Ross, "Computer Networking: A Top–Down Approach Featuring the Internet", Pearson Education, 2005.

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

			TEACHIN	NG & EV	VALUAT	TON SCH	EME					1
ODE	×		TH	EORY		PRACTI	ICAL					
COURSE CO	CATEGOR	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS	
BTCS102M	DCC	Introduction to Design Thinking	60	20	20	30	20	2	0	2	3	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

COURSE OBJECTIVES:

The student will have ability to:

- 1. To learn the concepts of Business Process Manager.
- 2. To emphasizing the concepts of reuse, ease of maintenance, and high-quality development strategies.
- 3. To create a simple case and a business process definition (BPD) from business requirements.

COURSE OUTCOMES:

Upon completion of the subject, students will be able to:

- 1. Define business process management (BPM)
- 2. List and describe the phases in the BPM lifecycle Procedure
- 3. Define process modelling
- 4. Create a process application.
- 5. Describe IBM Business Process Manager product components.
- 6. Understand what came before Design Thinking.
- 7. See how design thinking is introduced in an organization
- 8. Learn how it built upon previous approaches.
- 9. Get an overview of the whole approach to design thinking.
- 10. Understand the principles, loop, and keys.

SYLLABUS

UNIT I 10 HOURS

INTRODUCTION TO BUSINESS PROCESS MANAGEMENT &AS-IS BUSINESS: PROCESS Define business process management (BPM), List and describe the phases in the BPM lifecycle procedure, Define process modeling., Describe how to use IBM Business Process Manager to accomplish process modeling goals, Explain how to create and modify process applications in the Process Center, Create a process application, Explain case management, Describe the purpose and function of Blue works Live, List and describe the core notation elements that are used in IBM Process Designer, Create a business process definition (BPD) from the process and nested process tasks and responsible, Explain how to create and modify process models with the Designer view of the IBM Process Designer.

UNIT II 9 HOURS

PLAYBACK 0: MODELING PROCESS: List and describe gateways as they are used in IBM Process Designer, List and describe intermediate event types that are used in IBM Process Designer, Model a business process escalation path with an attached timer intermediate event, Describe the Playback 0 validation goals and

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

			TEACHIN	NG & EV	VALUAT	ION SCH	EME				
CODE	X		TH	EORY		PRACTI	ICAL				
COURSE CO	CATEGOR	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
BTCS102M	DCC	Introduction to Design Thinking	60	20	20	30	20	2	0	2	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

requirements, Validate that a process model meets Playback 0 goals and Requirements, Describe IBM Business Process Manager product components, Identify the integrations with other IBM products.

UNIT III 8 HOURS

ENTERPRISE DESIGN THINKING – HISTORY, OVERVIEW: Understand what came before Design Thinking, Identify who did what to bring it about, Learn how it built upon previous approaches, Get an overview of the whole approach to design thinking, Understand the principles, loop, and keys, Determine what is most important.

UNIT IV 7 HOURS

ENTERPRISE DESIGN THINKING –7 KEY HABITS, THE LOOP, USER RESEARCH: Learn 7 key habits of effective thinkers design, Avoid common anti-patterns, Optimize for success with these habits, Understand the importance of iteration, Learn how to observe, reflect, & make, Get ready to drill down & do tomorrow, Understand the importance of user research, Appreciate empathy through listening, Learn key methods of user research.

UNIT V 8 HOURS

ENTERPRISE DESIGN THINKING – MAKE, USER FEEDBACK: Understand how Make fits into the Loop, Learn how to leverage Observe information, Learn Ideation, Storyboarding, & Prototyping, Understand user feedback and the Loop, Learn the different types of user feedback, Learn how to carry out getting feedback.

TEXTBOOKS:

1. IBM COURSEWARE – SKILLS ACADEMY

REFERENCE:

IBM COURSEWARE – SKILLS ACADEMY

LIST OF PRACTICALS

- 1. CREATING YOUR FIRST DISCOVERY MAP IN BLUEWORKS LIVE Study of Process Life Cycle.
- 2. CREATING PROCESS MODEL IN BLUEWORKS LIVE.
- 3. ADDING AND VIEWING PROCESS DETAILS IN BLUEWORKS LIVE
- 4. ENTERPRISE DESIGN THINKING LISTENING

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

			TEACHIN	NG & EV	ALUAT	ION SCH	EME					1
ODE	Y		TH	EORY		PRACTI	ICAL					
COURSE CO	CATEGOR	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS	
BTCS102M	DCC	Introduction to Design Thinking	60	20	20	30	20	2	0	2	3	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

- 5. ENTERPRISE DESIGN THINKING HMW
- 6. ENTERPRISE DESIGN THINKING USER RESEARCH
- 7. ENTERPRISE DESIGN THINKING REFLECT
- 8. ENTERPRISE DESIGN THINKING IDEATION
- 9. ENTERPRISE DESIGN THINKING STORYBOARDING
- 10. ENTERPRISE DESIGN THINKING CRAFTING HILLS
- 11. ENTERPRISE DESIGN THINKING PROTOTYPING

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

Ī				TEACHIN	NG & EV	ALUAT	TON SCH	EME				
	ODE	X		TH	EORY		PRACTI	ICAL				_
	COURSE CO	CATEGORY	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
•	RH134N	SEC	Red Hat Administration II	0	0	0	0	150	0	0	2	1

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

COURSE OBJECTIVES:

The student will have ability to:

- 1. Understand enterprise Linux administration
- 2. Understand file systems and partitioning, logical volumes
- 3. Understand SE Linux, firewalling, and troubleshooting

COURSE OUTCOMES:

Upon completion of the subject, students will be able to:

- 1. Automate installations using Kick-start
- 2. Manage file systems and logical volumes
- 3. Manage scheduled jobs
- 4. Access network file systems
- 5. Manage SE Linux
- 6. Control firewalls
- 7. Perform troubleshooting tasks

SYLLABUS

UNIT I 10 HOURS

Automate installation with Kick start

Automate the installation of Red Hat Enterprise Linux systems with Kick start.

• Use regular expressions with grip

Write regular expressions that, when partnered with grip, will allow you to quickly isolate or locate content within text files.

• Create and Edit text files with vim

The vim text editors, with which you can open, edit, and save text files.

• Schedule future Linux tasks

Schedule tasks to automatically execute in the future.

• Manage priority of Linux processes

Influence the relative priorities at which Linux processes run.

• Control access to files with access control lists (ACL)

Manage file security using POSIX access control lists.

Manage SE Linux security

o Manage the Security Enhanced Linux (SE Linux) behavior of a system to keep it secure in case of a network service compromise.

• Connect to network-defined users and groups

o Configure systems to use central identity management services.

Chairperson

Chairperson

Controller of Examination

Registrar

Board of Studies, ShriVaishnavVidyapeeth Vishwavidyalaya, Indore Faculty of Studies, ShriVaishnavVidyapeeth Vishwavidyalaya, Indore

ShriVaishnavVidyapeeth Vishwavidyalaya, Indore ShriVaishnavVidyapeeth Vishwavidyalaya, Indore

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

			TEACHIN	NG & EV	VALUAT	ION SCH	EME				
ODE	Y		TH	EORY		PRACTI	ICAL				
COURSE CO	CATEGOR	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
RH134N	SEC	Red Hat Administration II	0	0	0	0	150	0	0	2	1

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

- Add disks, partitions, and file systems to a Linux system Manage simple partitions and file systems.
- Manage logical volume management (LVM) storage Manage logical volumes from the command line.
- Access networked attached storage with network file system (NFS) Access (secure) NFS shares.
- Access networked storage with SMB

Use autofs and the command line to mount and unmounts SMB file systems.

- Control and troubleshoot the Red Hat Enterprise Linux boot process
- Limit network communication with firewall

Configure a basic firewall.

• Comprehensive review

Practice and demonstrate knowledge and skills learned in this course

TEXTBOOKS:

1. 1 SA2 REDHAT SYSTEMADMINISTRATION II (Release en-3-20170803) By Wander Bosanko, Bruce Wolfe, Scott Mc Brien, George Hacker, Chen Chang.

LIST OF PRACTICALS

- 1. Automate installation with Kick start
- 2. Use regular expressions with grip
- 3. Create and Edit text files with vim
- 4. Schedule future Linux tasks
- 5. Manage priority of Linux processes
- 6. Control access to files with access control lists (ACL)
- 7. Manage SE Linux security
- 8. Connect to network-defined users and groups
- 9. Add disks, partitions, and file systems to a Linux system
- 10. Manage logical volume management (LVM) storage
- 11. Access networked attached storage with network file system (NFS)
- 12. Access networked storage with SMB
- 13. Control and troubleshoot the Red Hat Enterprise Linux boot process

B.Tech (CSE with specialization in Enterprise System in association with RedHat)
Choice Based Credit System (CBCS)-2025-29
SEMESTER-II

			TEACHI	NG & EV	VALUAT	ION SCH	EME				
ODE	×		TH	EORY		PRACT	ICAL				
COURSE CO	CATEGOR	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
BTIT307N	SEC	Introduction to core JAVA	0	0	0	30	20	0	0	2	1

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.