

NATIONAL EDUCATION POLICY

GENERAL ELECTIVE FOR UG

Subject Code	Category	Subject Name	Teaching and Evaluation Scheme								
			Theory			Practical					
			End Sem Univer sity Exam	Two Term Exam	Teac hers Asses smen t*	End Sem Unive rsity Exam	Tea cher s Asse ssm ent*	Th	Т	Р	CREDITS
GUPH601	GE	Advanced Characterization methods for Nanomaterials	60	20	20	0	0	4	0	0	4

Course Objectives	 To develop the comprehensive understanding of advanced characterization methods for Nanomaterials and ability to apply them to a particular nanomaterial and laying the foundation for research and development. To work ethically as member as well as leader in a diverse team.
Course Outcomes	 Student will be able to understand and solve the problems related to characterization of Nanomaterials. Student will be able to determine physical parameter experimentally with optimal usage of resources and complete the assignments in time.

Abbre	viation	Teacher Assessment (Theory) shall be based on following components: Quiz / Assignment/ Project				
Th	Theory	 / Participation in class (Given that no component shall be exceed 10 Marks). 				
Т	Tutorial	Teacher Assessment (Practical) shall be based on following components: Viva / File / Participation				
Р	Practical	in Lab work (Given that no component shall be exceed 50% of Marks).				

Chairperson Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore **Chairperson** Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Controller of Examination Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Joint Registrar Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

<u>GUPH601</u>: Advanced Characterization methods for Nanomaterials

UNIT I: Basic of Nanoscience Background to nanoscience, Nanomaterials in Different Configurations: 3D, 2D, 1D & 0D Materials, surface to volume ratio, Synthesis of Nanomaterials: Hydrothermal, Sol–Gel Method, Resistive heating and Electron beam deposition, Sputtering

UNIT II: X-ray/ Synchrotron based Spectroscopy techniques: powder X-ray diffraction, glancing angle X-ray diffraction, X-ray fluorescence, X-ray photo-electron spectroscopy, X-ray absorption fine structure

UNIT III: Optical characterization techniques: RAMAN spectroscopy, UV-visible spectroscopy, FT-IR spectroscopy, Photoluminescence, Ionoluminescence

UNIT IV: Microscopic Techniques Optical microscopy, scanning tunneling microscopy, scanning electron microscopy, transmission electron microscopy

UNIT V: Magnetic characterization: Superconducting quantum interference device magnetometry (SQUID), Vibrating sample magnetometry (VSM), Mössbauer spectroscopy

REFERENCES

- Essentials in nanoscience and nanotechnology, Narendra Kumar, Sunita Kumbhat., 2016, John Wiley & Sons
- 2. Scanning Electron Microscopy, Ludwig Reimer, 1998, Springer
- 3. MODERN SPECTROSCOPY, J. Michael Hollas, 2004, WILEY
- 4. Luminescence: From Theory to Applications, Cees Ronda, 2008, WILEY
- 5. Magnetic Characterization Techniques for Nanomaterials, Challa S.S.R. Kumar, 2018, Springer

Chairperson Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Controller of Examination Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Joint Registrar Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore