

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

NATIONAL EDUCATION POLICY GENERAL ELECTIVE FOR UG

Subject Code	Category	Subject Name	Teaching and Evaluation Scheme								
			Theory			Practical					Ñ
			End Sem Univer sity Exam	Two Term Exam	Teach ers Asses smen t*	End Sem Unive rsity Exam	Teac hers Asse ssm ent*	Th	Т	P	CREDITS
GUPH401	IDC	Fundamentals of Quantum Mechanics	60	20	20	0	0	4	0	0	4

Course Objectives	 To develop the comprehensive understanding of laws of physics related to Quantum Mechanics and Spectroscopy and ability to apply them for laying the foundation for research and development. To work ethically as member as well as leader in a diverse team.
Course Outcomes	 Student will be able to understand and solve the problems related to Quantum Mechanics and Spectroscopy. Student will be able to determine physical parameter experimentally with optimal usage of resources and complete the assignments in time.

Abbre	viation	Teacher Assessment (Theory) shall be based on following components: Quiz / Assignment/ Projection (City Components)				
Th	Theory	/ Participation in class (Given that no component shall be exceed 10 Marks).				
Т	Tutorial	Teacher Assessment (Practical) shall be based on following components: Viva / File / Participation				
P	Practical	in Lab work (Given that no component shall be exceed 50% of Marks).				

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

GUPH401: Fundamentals of Quantum Mechanics

UNIT I : Particles and waves inadequacies in classical physics, Blackbody radiation: quantum theory of light. Photoelectric effect, Compton Effect, Wave nature of matter: de Broglie hypothesis.

UNIT II: Wave-particle duality, Davisson-Germer experiment, Wave description of particles by wave packets. Group and phase velocities and relation between them, Two-slit experiment with electrons. Probability, Wave amplitude and wave functions.

UNIT III: Heisenberg's uncertainty principle (uncertainty relations involving canonical pair of variables): derivation from wave packets. Energy, momentum and Hamiltonian operators, Derivation of Time dependent and independent Schrodinger wave equation.

UNIT IV: Time-independent Schrodinger wave equation for stationary states, Properties of wave Function. Interpretation of wave function, Probability density, Conditions for physical acceptability of wave functions, Linearity and superposition Principles, Eigen values and Eigen functions

UNIT V: Expectation values, Wave function of a free Particle. Applications of Schrödinger wave equation: Eigen functions and Eigen values for a particle in a one dimensional box.

References

- 1. Quantum Mechanies: V. Devanathan, Narosa Publishing House, New Delhi, 2005
- 2. Quantum Mechanics: B. H. Bransden, Pearson Education, Singapore, 2005
- 3. Quantum Mechanics: Concepts and Applications, Nouredine Zettili, Jacksonville tate University, Jacksonville, USA, John Wiley and Sons, Ltd, 2009
- 4. Physics of Atoms and molecules: B.H. Bransden and C.J. Joachaim, Pearson Education, Singapore. 2003
- 5. Fundamentals of Molecular Spectroscopy: C.M. Banwell and M. McCash. McGraw Hill (U.K. edition).
- 6. Introduction to Atomic Physics, H. E. White Quantum Mechanics: Schaums Outlines, Y. Peleg, R. Pnini, E. Zaarur, E. Hecht.